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1 Overview 

Itron, Inc. recently completed a long-term sales, energy, and demand forecast for Burlington 

Electric Department (BED).  The forecast extends through 2040.   

 

BED serves approximately 21,100 customers – 17,200 residential customers and 3,900 

commercial customers.  As the state’s primary commercial and education center, the 

commercial sector accounts for roughly 75% of BED’s sales.  In 2018, total system deliveries 

(including losses) were 341,234 MWh (a 0.7% increase over 2017) with system peak 

reaching 67.3 MW.  The 2018 sales increase can largely be attributed to warmer weather as 

since 2010 sales have been declining 0.4% annually even with relatively strong customer 

growth of 0.6% per year.  Reduction in sales can largely be attributed to strong energy 

efficiency (EE) program activity and new appliance standards that have been phasing in over 

the last five years. 

 

Over the next twenty years, base-case system energy requirements average 0.3% annual 

growth with annual customer growth of 0.5%.  Peak demand increases 0.2% annually over 

this period. In comparison, since 2010, system energy has declined on average 0.5% annually 

and peak demand has declined 0.1% on average. Positive forecasted energy requirements are 

largely the result of expected electric vehicle sales growth in the second half of the forecast 

period.  
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Table 1-1 shows BED energy and demand forecast. 
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Table 1-1:  BED System Energy and Demand Forecast (Base Case) 

 

• Actual through 2018 

• Base case includes solar and electric vehicle projections 
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System energy requirements and peak demand forecasts are derived using a “build-up” 

approach. This entails first developing residential and commercial forecast models that are 

then used to isolate heating, cooling, and non-weather sensitive end-use energy projections. 

End-use energy forecasts combined with peak-day weather conditions then drive system peak 

demand. Energy, peak, and hourly load profile forecasts are combined to generate a system 

baseline hourly load forecast. The baseline hourly load forecast is then adjusted for the 

impact of new technologies including solar, electric vehicles, and cold climate heat pumps.  

Figure 1 outlines the modeling approach. 

 

Figure 1:  BED Long-Term Build-up Model 

 
 

In the long-term, both economic growth and structural changes drive energy and demand 

requirements.  Structural changes are captured in the residential and commercial sales 

forecast models through SAE (Statistically Adjusted End-Use) specifications.  The SAE 

model variables explicitly incorporate end-use saturation and efficiency projections, as well 

as changes in population, economic conditions, price, and weather.  End-use efficiency 

projections include the expected impact of new end-use standards, naturally occurring 
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efficiency gains and BED energy efficiency (EE) programs.  Streetlight sales are forecasted 

using a simple trend and seasonal model.  Table 1-2 shows customer class sales forecast.  

The forecast includes solar impacts and electric vehicles. 

 

Table 1-2:  Customer Class Sales Forecast (MWh)  

 

 

After adjusting for expected efficiency savings, total sales projections are flat; improvements 

in end-use efficiency balance customer and economic growth.  There is a near-term increase 

in residential sales as a result of several multi-family construction projects.  Commercial 

sales are flat to declining through the period as a result of strong energy efficiency 

improvements.  

 

  

Year Residential Chg Commercial Chg Other Chg Total chg
2010 85,311 260,165 3,053 348,528

2011 84,817 -0.6% 255,031 -2.0% 3,031 -0.7% 342,879 -1.6%

2012 83,579 -1.5% 254,374 -0.3% 2,956 -2.5% 340,910 -0.6%

2013 85,320 2.1% 251,896 -1.0% 2,744 -7.2% 339,960 -0.3%

2014 83,404 -2.2% 253,290 0.6% 2,597 -5.4% 339,291 -0.2%

2015 83,177 -0.3% 257,480 1.7% 2,525 -2.8% 343,181 1.1%

2016 81,981 -1.4% 255,173 -0.9% 2,412 -4.5% 339,565 -1.1%

2017 79,795 -2.7% 249,217 -2.3% 2,245 -6.9% 331,258 -2.4%

2018 84,130 5.4% 247,479 -0.7% 2,155 -4.0% 333,764 0.8%

2019 81,171 -3.5% 246,572 -0.4% 2,160 0.2% 329,903 -1.2%

2020 81,164 0.0% 248,466 0.8% 2,123 -1.7% 331,752 0.6%

2021 81,189 0.0% 250,076 0.6% 2,086 -1.7% 333,351 0.5%

2022 81,323 0.2% 252,330 0.9% 2,049 -1.8% 335,702 0.7%

2023 81,665 0.4% 251,796 -0.2% 2,013 -1.8% 335,474 -0.1%

2024 82,702 1.3% 252,147 0.1% 1,976 -1.8% 336,825 0.4%

2025 83,298 0.7% 251,132 -0.4% 1,939 -1.9% 336,369 -0.1%

2026 83,916 0.7% 250,194 -0.4% 1,902 -1.9% 336,012 -0.1%

2027 84,811 1.1% 249,341 -0.3% 1,865 -1.9% 336,017 0.0%

2028 86,008 1.4% 249,310 0.0% 1,829 -2.0% 337,147 0.3%

2029 87,053 1.2% 248,226 -0.4% 1,792 -2.0% 337,071 0.0%

2030 88,419 1.6% 246,652 -0.6% 1,755 -2.1% 336,826 -0.1%

2031 90,018 1.8% 245,333 -0.5% 1,718 -2.1% 337,069 0.1%

2032 92,010 2.2% 244,780 -0.2% 1,681 -2.1% 338,471 0.4%

2033 93,793 1.9% 243,161 -0.7% 1,645 -2.2% 338,599 0.0%

2034 95,864 2.2% 242,255 -0.4% 1,608 -2.2% 339,727 0.3%

2035 98,203 2.4% 241,310 -0.4% 1,571 -2.3% 341,083 0.4%

2036 100,877 2.7% 241,038 -0.1% 1,534 -2.3% 343,449 0.7%

2037 102,969 2.1% 239,799 -0.5% 1,497 -2.4% 344,266 0.2%

2038 105,263 2.2% 239,109 -0.3% 1,461 -2.5% 345,832 0.5%

2039 107,315 1.9% 238,453 -0.3% 1,424 -2.5% 347,192 0.4%

2040 109,462 2.0% 237,870 -0.2% 1,387 -2.6% 348,718 0.4%

2010 - 18 -0.1% -0.6% -4.2% -0.5%

2019 - 29 0.7% 0.1% -1.9% 0.2%

2019 - 39 1.4% -0.2% -2.1% 0.3%
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2 Forecast Data and Assumptions 

2.1   Historical Class Sales and Energy Data 

Sales forecasts are based on linear regression models estimated for residential, commercial, 

and street lighting customer classes. Models are estimated using historical monthly billing 

data that includes sales, customers, and revenue. Sales loss as a result of solar adoption are 

added back to residential and commercial sales. The estimation period includes January 2010 

to December 2018. 

 

System monthly energy and monthly peak demands are derived from historical system hourly 

load data with solar load added back in. Models are estimated over the period January 1, 

2010 to December 31, 2018.  System energy is forecast is derived by applying average 

monthly loss factors to the sales forecasts.  Monthly system peak demand is estimated using 

linear regression model.  

 

 

2.2  Weather Data 

Historical and normal monthly HDD and CDD were provided by BED. Normal degree days 

are based on the 20-year period 1999 to 2018. 

 

Peak-Day Weather Variables 

The peak forecast is generated from a monthly peak regression model.  Peak-day CDD and 

HDD are derived from historical daily average weather data for Burlington.  Peak-day HDD 

and CDD are calculated by first finding the peak in each month (the maximum hourly 

demand), identifying the day, and finding the average temperature for that day.  The average 

peak-day temperature is then used to construct peak-day HDD and CDD variables.  The 

appropriate breakpoints for the HDD and CDD variables are determined by evaluating the 

relationship between monthly peak and the peak-day average temperature, shown in Figure 2. 
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Figure 2: Monthly Peak Demand /Temperature Relationship 

 
 

Winter peaks occur when average daily temperature is below 45 degrees and summer peaks 

occur when average daily temperature exceeds 70 degrees.  Peak-day degree-days are 

defined for these breakpoints and used in estimating the monthly peak regression model.   

Shoulder month peaks generally are cooling-driven with average day temperature between 50 

and 70 degrees; a second peak-day CDD with a 50-degree temperature breakpoint captures 

the weather impact for these days.    

 

Normal peak-day CDD and HDD are calculated from daily HDD (base 45 degrees) and CDD 

(bases 50 and 70 degrees) for Burlington.  Normal peak-day HDD and CDD are calculated 

using twenty years of historical weather data (1999to 2018).  The calculation process entails 

using a rank and average approach as described below:  

 

1. Calculate daily HDD and CDD over the twenty-year period. 

2. Find the highest HDD and CDD that occur in each month.  This results in twelve 

monthly HDD and twelve monthly CDD for each year. 

3. Rank the monthly HDD and CDD in each year from the highest value to the lowest 

value. 

4. Average across the annual rankings – average the highest HDD values in each year, 

average the second highest in each year, the third highest …., average the lowest 

HDD values in each year.  This results in twelve HDD values and twelve CDD 

values. 

5. Assign the HDD and CDD values to specific months based on past weather patterns.  

The highest HDD is assigned to January and the highest CDD value is assigned to 

Winter 

Shoulder months 

Summer 
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August.  Figure 3 shows the calculated peak-day normal HDD (base 45 degrees) and 

CDD (bases 50 and 70 degrees). 

 

Figure 3:  Peak-Day Normal HDD and CDD 

 
 

2.3 Economic Data 

The class sales forecasts are based on Moody’s Economy.com January 2019 economic 

forecast for the Burlington MSA. The primary economic drivers in the residential model 

include household income and the number of new households.  Commercial sales are driven 

by regional output and employment. 

   

 

Table 2-1 summarizes the primary economic drivers. 
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Table 2-1:  Economic Forecast (Burlington MSA) 
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Burlington MSA is expected to see stronger economic growth than the state overall, with the 

region adding 300 to 400 new households per year with moderate GDP growth averaging 

1.6% over the forecast period. 

 

2.4 Price Data 

Historical prices (real dollars) are provided by BED.  Prices impact the class sales through 

imposed price elasticities.  The residential and commercial price elasticities are set at -0.10.  

Over the long-term, we assume constant real prices.  Figure 4 shows price forecasts by 

customer class.   

 

Figure 4:  Historical and projected real electricity prices (cents per kWh) 

 
 

2.5 Appliance Saturation and Efficiency Trends 

Average use in both residential and commercial sector have been declining over the last ten 

years.  The primary contributor has been significant efficiency improvements in residential 

appliances, thermal shell, and business end-uses.   Efficiency improvements are a result of 

appliance standards, building codes, and BED energy efficiency programs. Efficiency 

impacts are captured through historical and projected end-use intensities.  In the residential 

sector intensities are measured in kWh per household and in the commercial sector intensities 

are in kWh per square foot.  Starting end-use intensities are derived from the Energy 
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Information Administration’s (EIA) 2018 New England Census Division forecast.  These 

saturation projections are adjusted to reflect BED residential appliance saturation surveys and 

mix of multi-family and single-family homes.  Efficiency projections are adjusted to account 

for additional program efficiency savings that are not reflected in the EIA’s regional forecast.  

The residential sector includes saturation and efficiency trends for seventeen end-uses, and   

the commercial sector has end-use intensity projections for ten end-uses across ten building 

types.   

 

The residential sales forecast is derived as the product of monthly customer forecast and 

average use forecast.  For the residential average use model, end-use intensity projections are 

aggregated into three generalized end-uses: heating, cooling, and other use.  Figure 5 shows 

the primary end-use intensity projections.  

 

Figure 5:  Residential End-Use Energy Intensities 

 
* Incorporates impact of BED Funded EE Programs 

 

Heating intensity declines 0.8% annually through the forecast period reflecting continuing 

improvements in heating technology (improvements in heat pump and furnace fan 

efficiency), substitution of resistance heat for heat pumps, and declining overall heating 

saturation.  Average heating intensity is relatively low as majority of households’ heat with 

natural gas.  Though small, cooling intensity is expected to increase.  Through 2018, BED 
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experienced strong growth in cooling intensity averaging 1.2% annual growth.  This increase 

was largely driven by room air conditioning saturation growth.  Cooling intensity flattens-out 

over the forecast period as room air conditioning saturation growth slows.  Non-weather 

sensitive end-use intensity continues to decline over the forecast period as a result of new 

appliance standards and natural replacement of existing equipment stock, and EE program 

activity.   

 

Commercial end-use intensities (expressed in kWh per square foot) are adjusted to reflect 

BED commercial building-mix.  As in the residential sector, there have been significant 

improvements in end-use intensities as a result of new standards and EE programs.  Figure 6 

shows commercial end-use energy intensity forecasts for the aggregated end-use categories. 

 

Figure 6:  Commercial End-Use Energy Intensity 

 
 

Given temperate summers and low saturation of electric heat, commercial heating and 

cooling intensities are relatively small.  The decline in non-HVAC intensities is the result of 

improving commercial equipment efficiency and EE program impacts.  Strong declines in 

lighting and ventilation intensities have the largest impact on non-weather sensitive use.  
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Adjusting for EE Program Impacts 

EIA’s New England intensity projections reflect expected impacts of regional EE program 

activity.  EIA uses an end-use modeling approach where the more efficient technology 

options are “rebated” which in turn lowers the technology costs and results in selection of the 

more efficient technology options.  A given utility may do more or less EE than what is 

assumed for the region.  End-use intensities are adjusted to reflect any difference in EE 

program impacts. An EE adjustment factor is estimated by incorporating historical 

cumulative EE savings as a model variable.  For BED, the residential EE savings variable is 

statistically significant with a coefficient of approximately -0.2.  This implies that the 

regional intensity projections are capturing 80% (1.0 - 0.2) of BED’s program activities.  The 

end-use intensities (other than lighting) are adjusted down an additional 20% of projected 

program savings.  With adjustments for EE programs total residential intensity averages 

0.5% annual decline over the forecast period, and commercial intensity declines 0.9% 

annually.  
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3 Forecast Methodology 

3.1 Class Sales Forecast 

Changes in economic conditions, prices, weather conditions, as well as appliance saturation 

and efficiency trends drive energy deliveries and demand through a set of monthly customer 

class sales forecast models.  Monthly regression models are estimated for each of the 

following primary revenue classes: 
 

• Residential 

• Commercial 

• Street Lighting 

 

3.1.1 Residential Model 

Residential average use and customers are modeled separately.  The residential sales forecast 

is then generated as the product of the average use and customer forecasts.  As the objective 

is to model what is actually consumed, solar load for “own-use” is added back to historical 

billed sales. 

 

The residential average use model is specified using an SAE model structure.  Average use is 

defined as a function of the three primary end-uses - cooling (XCool), heating (XHeat) and 

other use (XOther): 
 

𝑅𝑒𝑠𝐴𝑣𝑔𝑈𝑠𝑒𝑚 = 𝐵0 + (𝐵1 × 𝑋𝐻𝑒𝑎𝑡𝑚) + (𝐵2 × 𝑋𝐶𝑜𝑜𝑙𝑚) + (𝐵3 × 𝑋𝑂𝑡ℎ𝑒𝑟𝑚) + 𝑒𝑚  

 

The end-use variables incorporate both a variable that captures short-term utilization (Use) 

and a variable that captures changes in end-use efficiency and saturation trends (Index).  The 

heating variable is calculated as: 

 

𝑋𝐻𝑒𝑎𝑡 = 𝐻𝑒𝑎𝑡𝑈𝑠𝑒 × 𝐻𝑒𝑎𝑡𝐼𝑛𝑑𝑒𝑥  
 

Where  

 

𝐻𝑒𝑎𝑡𝑈𝑠𝑒 = 𝑓(𝐻𝐷𝐷, 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝐼𝑛𝑐𝑜𝑚𝑒, 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑆𝑖𝑧𝑒, 𝑃𝑟𝑖𝑐𝑒)  
 

𝐻𝑒𝑎𝑡𝐼𝑛𝑑𝑒𝑥 = 𝑔(𝐻𝑒𝑎𝑡𝑖𝑛𝑔 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦, 𝑆ℎ𝑒𝑙𝑙 𝐼𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦, 𝑆𝑞𝑢𝑎𝑟𝑒 𝐹𝑜𝑜𝑡𝑎𝑔𝑒)  
 

The cooling variable is defined as: 
 

𝑋𝐶𝑜𝑜𝑙 = 𝐶𝑜𝑜𝑙𝑈𝑠𝑒 × 𝐶𝑜𝑜𝑙𝐼𝑛𝑑𝑒𝑥 
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Where  

 

CoolUse = f(CDD, Household Income, Household Size, Price)  
 

𝐶𝑜𝑜𝑙𝐼𝑛𝑑𝑒𝑥 = 𝑔(𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦, 𝑆ℎ𝑒𝑙𝑙 𝐼𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦, 𝑆𝑞𝑢𝑎𝑟𝑒 𝐹𝑜𝑜𝑡𝑎𝑔𝑒)  

 

XOther captures non-weather sensitive end-uses: 

 

𝑋𝑂𝑡ℎ𝑒𝑟 = 𝑂𝑡ℎ𝑒𝑟𝑈𝑠𝑒 × 𝑂𝑡ℎ𝑒𝑟𝐼𝑛𝑑𝑒𝑥  
 

Where  

 

𝑂𝑡ℎ𝑒𝑟𝑈𝑠𝑒 = 𝑓(𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑈𝑠𝑒 𝑃𝑎𝑡𝑡𝑒𝑟𝑛, 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝐼𝑛𝑐𝑜𝑚𝑒, 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑆𝑖𝑧𝑒, 𝑃𝑟𝑖𝑐𝑒)  
 
𝑂𝑡ℎ𝑒𝑟𝐼𝑛𝑑𝑒𝑥 = 𝑔(𝑂𝑡ℎ𝑒𝑟 𝐴𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑇𝑟𝑒𝑛𝑑𝑠)  

 

The specific calculations of the end-use variables are presented in Appendix B. 

 

Figure 7 to Figure 9 show the constructed monthly end-use variables. 

 

Figure 7:   Residential XHeat (kWh per month)  
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Figure 8:   Residential XCool (kWh per month)  

 
 

Figure 9:   Residential XOther (kWh per month) 
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The average use model is estimated over the period January 2010 through December 2018. 

The model explains historical average use well with an Adjusted R2 of 0.97 and in-sample 

MAPE of 1.6%.  Figure 10 shows actual and predicted average use. 

 

Figure 10:   Actual and Predicted Residential Average Use (kWh per month) 

 
 

Model coefficients and statistics are provided in Appendix A. 

 

Residential use per customer has been declining at 0.6% per year over the last ten years.  It is 

projected to decline further in the forecast period but at a slightly slower rate as decline in 

lighting intensity slows and current standards work through the appliance base. In the out 

years average use level off as end-use intensity projections only includes standards that are 

currently law.   

 

Customer Forecast 

The customer forecast is based on a monthly regression model that relates the number of 

customers to Burlington MSA (Metropolitan Statistical Area) household projections. There is 

a strong correlation between the number of customers and households - customer growth 

generally tracks household projections. Slightly stronger average customer growth rate in the 

period 2019-29 is explained largely by the completion of construction projects that are 

expected to add almost a thousand new customers over 2019-22. 
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With 0.5% decrease in average use and 0.9% increase in customer growth, residential sales 

average 0.3% growth between 2019 and 2039.  Table 3-1 shows the residential forecast 

excluding the impact of PV and EV adoption; historical sales includes solar energy savings 

that are added back. 

 

Table 3-1:  Residential Forecast  
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3.1.2 Commercial Model 

Like the residential model, the commercial SAE sales model expresses monthly sales as a 

function of XHeat, XCool, and XOther.  The end-use variables are constructed by interacting 

annual end-use intensity projections (EI) that capture end-use efficiency improvements, with 

non-manufacturing GDP and employment (ComVarm ), real price (Pricem), and monthly 

HDD and CDD: 

 

• 𝑋𝐻𝑒𝑎𝑡𝑚 = 𝐸𝐼ℎ𝑒𝑎𝑡 × 𝑃𝑟𝑖𝑐𝑒𝑚
−0.10 × 𝐶𝑜𝑚𝑉𝑎𝑟𝑚 × 𝐻𝐷𝐷𝑚  

• 𝑋𝐶𝑜𝑜𝑙𝑚 = 𝐸𝐼𝑐𝑜𝑜𝑙 × 𝑃𝑟𝑖𝑐𝑒𝑚
−0.10 × 𝐶𝑜𝑚𝑉𝑎𝑟𝑚 × 𝐶𝐷𝐷𝑚  

• 𝑋𝑂𝑡ℎ𝑒𝑟𝑚 = 𝐸𝐼𝑜𝑡ℎ𝑒𝑟 × 𝑃𝑟𝑖𝑐𝑒𝑚
−0.10 × 𝐶𝑜𝑚𝑉𝑎𝑟𝑚 

 

The coefficients on price are imposed short-term price elasticities.  A monthly forecast sales 

model is then estimated as: 

 

𝐶𝑜𝑚𝑆𝑎𝑙𝑒𝑠𝑚 = 𝐵0 + 𝐵1𝑋𝐻𝑒𝑎𝑡𝑚 + 𝐵2𝑋𝐶𝑜𝑜𝑙𝑚 + 𝐵3𝑋𝑂𝑡ℎ𝑒𝑟𝑚 + 𝑒𝑚 

 

Commercial Economic Driver 

Output and employment are combined through a weighted economic variable where ComVar 

is defined as:  

 

𝐶𝑜𝑚𝑉𝑎𝑟𝑚 = (𝐶𝑜𝑚𝐸𝑚𝑝𝑙𝑜𝑦𝑚
0.8) × (𝐶𝑜𝑚𝑂𝑢𝑡𝑝𝑢𝑡𝑚

0.2) 

 

The weights were determined by evaluating the in-sample and out-of-sample model statistics 

for different sets of employment and output weights. 

 

The resulting commercial sales model performs well with an Adjusted R2 of 0.95 and an in-

sample MAPE of 1.5%.  Figure 11 shows actual and predicted monthly commercial energy. 
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Figure 11:  Actual and Predicted Commercial Sales (kWh) 

 
 

Commercial sales are overall flat through the forecast period; improvements in end-use and 

building efficiency offset the impact of customer and economic growth.  The estimated 

model coefficients and model statistics are included in Appendix A. 

 

A separate model is estimated for commercial customers; customer projections are based on 

a monthly regression model that relates the number of customers to employment in the 

Burlington MSA.  Table 3-2 shows the commercial forecast excluding solar adjustments; 

historical commercial solar generation for own-use is added back to billed sales.  
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Table 3-2:  Commercial Forecast 

 
 

 

 

3.1.3 Street Lighting Sales 

Streetlight sales are projected using a simple regression model driven by outdoor lighting 

energy intensity and seasonal variables.  Street lighting sales have been declining and are 
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expected to continue to decline through the forecast period as increasing lamp efficiency 

outpaces installation of new streetlights. 

 

 

3.2  Solar Forecast 

The BED energy and peak forecast incorporates the impact of expected behind the meter 

photovoltaic adoption. Although relatively small in magnitude compared to the rest of 

Vermont, BED has experienced an uptick growth in the number and size of photovoltaic 

systems over the past two years.  Part of the jump was due to customers racing to beat 

changes in net metering laws that reduced system incentives. While some of the recent 

adoption is incentive-driven, continuing system cost declines will drive future long-term 

adoption. 

 

3.2.1 Market Share Model 

We assume that the primary factor driving PV adoption is the favorable economics from the 

customers’ perspective – system savings outweigh initial upfront cost and related financing. 

Simple payback is used as a proxy for customer’s return on investment. Simple payback 

reflects the length of time needed for a customer to recover the cost of installing a solar 

system - the shorter the payback, the higher the system adoption rate. There is a strong 

correlation between adoption and simple payback. The payback calculation is based on total 

installed cost, annual savings from reduced energy bills, and incentive payment for excess 

and own-use generation. 

 

Simple payback declines over the forecast period largely as a result of declining system cost. 

System costs have been declining rapidly over the last five years.  In 2010, the average 

residential solar system cost $6.24 per watt; by 2017 costs have dropped to $3.30 per watt.  

For the forecast we assume that system costs continue to decline 7% annually through 2022, 

at which point costs continue to decline at 1% a year. 

 

The PV adoption model relates the share of customers that have adopted solar systems to 

simple payback through a cubic model specification.  A cubic model specification results in 

an S-shaped adoption curve.  Figure 12 and Figure 13 show the resulting market share 

forecast for the residential class and commercial classes 
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Figure 12: Residential Solar Share Forecast 

 
 

Figure 13: Commercial Solar Share Forecast 
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As of December 2018, there were 268 residential and 88 commercial solar customer 

accounts, which amount to 1.6% and 2.3% market shares.  With declining system costs and 

incentives, residential share doubles over the next three years.  Commercial solar saturation 

also increases but at a slower rate.  Table 3-3 shows the solar share and resulting solar 

customer forecast. 

 

Table 3-3: Solar Customer Forecast 

 

Year Residential Share of Total Commercial Share of Total

2010 12 0.1% 6 0.2%

2011 15 0.1% 12 0.3%

2012 22 0.1% 22 0.6%

2013 34 0.2% 24 0.7%

2014 47 0.3% 29 0.8%

2015 58 0.3% 34 0.9%

2016 84 0.5% 39 1.0%

2017 168 1.0% 72 1.8%

2018 246 1.4% 86 2.2%

2019 295 1.7% 91 2.3%

2020 396 2.3% 98 2.5%

2021 449 2.5% 103 2.7%

2022 578 3.2% 121 3.1%

2023 675 3.7% 132 3.4%

2024 711 3.8% 134 3.4%

2025 724 3.9% 138 3.5%

2026 747 4.0% 139 3.5%

2027 757 4.0% 139 3.5%

2028 784 4.1% 143 3.6%

2029 811 4.3% 144 3.7%

2030 821 4.3% 148 3.7%

2031 849 4.4% 150 3.8%

2032 882 4.6% 153 3.9%

2033 919 4.8% 154 3.9%

2034 977 5.1% 155 3.9%

2035 1,010 5.2% 160 4.0%

2036 1,021 5.3% 164 4.1%

2037 1,049 5.4% 166 4.1%

2038 1,060 5.5% 171 4.2%

2039 1,088 5.6% 177 4.4%

2040 1,093 5.6% 182 4.5%
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3.2.2 Solar Capacity and Generation 

The installed solar capacity forecast is the product of the solar customer forecast and an 

assumed average system size, both for the residential and commercial classes. The average 

assumed size is 4.0 KW for residential systems and 22.0 KW for commercial systems 

(average system size of all the systems installed through 2018).  Figure 14 shows the 

installed solar capacity forecast. 

 

Figure 14: Solar Capacity Forecast 

 
 

The capacity forecast is translated into a monthly generation forecast by applying monthly 

solar load factors to the capacity forecast. The monthly load factors are derived from a 

typical PV load profile for Burlington VT. The PV shape is from the National Renewable 

Energy Laboratory (NREL) and represents a typical meteorological year (TMY).  

 

The impact of solar on peak demand is a function of the timing between solar load generation 

and system hourly demand.  Even though solar capacity reaches 8.5 MW by 2040, solar load 

reduces system peak demand by only 1.5 MW.  Given the system profile is relatively flat, 

solar generation effectively just shifts the peak out shifting peak demand from 3:00 p.m. to 

4:00 p.m.  The reduction in load between the 3:00 hour and 4:00 hour is smaller than the 

installed solar capacity.  Figure 15 shows the gross system profile, solar adjusted system 

profile, and solar profile for a peak producing summer day. 
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Figure 15: Solar Hourly Load Impact 

 
 

PV capacity has no impact on the winter peak demand as the winter peak is late in the 

evening when there is no solar generation. 

 

Table 3-4 shows the PV capacity forecast and expected annual generation impacts.  
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Table 3-4: Solar Capacity and Generation 

 
 

3.3 Electric Vehicle Forecast 

The BED forecast incorporates the impact of electric vehicle adoption and charging.  At the 

time of the forecast there were 222 registered electric vehicles (EV) and plug-in hybrid 

electric vehicles (PHEV) in the BED service territory.  With 25,335 total registered light-

duty vehicles, EV/PHEV account for less than 1% of all vehicle on the road.  While 

Year

Installed Capacity 

MW (July)

Generation      

MWh

2010 0.1 117.4

2011 0.3 293.9

2012 0.5 584.2

2013 0.6 811.8

2014 0.9 1,098.6

2015 1.0 1,311.6

2016 1.3 1,615.3

2017 1.9 2,398.2

2018 2.9 3,459.4

2019 3.2 3,946.6

2020 3.8 4,677.2

2021 4.0 5,036.4

2022 5.1 6,182.3

2023 5.7 6,999.2

2024 5.8 7,255.1

2025 6.0 7,393.5

2026 6.1 7,535.9

2027 6.1 7,599.3

2028 6.3 7,859.6

2029 6.5 8,013.3

2030 6.6 8,163.7

2031 6.7 8,342.5

2032 6.9 8,634.4

2033 7.1 8,814.8

2034 7.4 9,131.8

2035 7.6 9,432.9

2036 7.7 9,632.5

2037 7.9 9,792.2

2038 8.0 9,975.3

2039 8.3 10,278.9

2040 8.4 10,491.2
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EV/PHEV currently represent a small percentage of vehicle, improvements in charging 

infrastructure and continued state and federal incentives will ensure their growth.  

 

3.3.1 EV/PHEV Adoption Forecast 

The EV/PHEV adoption forecast is based on a recent Bloomberg New Energy Finance 

forecast of EV/PHEV sales as a percentage of total new vehicle sales.  Currently EV/PHEV 

sales account for 2-3% of new vehicle sales nationally, this is forecasted to increase to nearly 

60% by 2040.  Figure 16 shows the Bloomberg EV/PHEV sales share forecast. 

 

Figure 16: Bloomberg EV/PHEV Sales Forecast 

 
The forecast also accounts for the changing mix of EV and PHEV sales, currently the mix is 

approximately 50/50, but EVs are forecasted to increase to nearly 90% of all EV/PHEV sales 

by 2040. 

 

Assumptions regarding annual kWh per vehicle are based on the average efficiency ratings of 

5 popular EV/PHEV models. Its assumed vehicles drive 8,000 miles annually with the 

PHEVs operating in all electric mode 50% of the time or 4,000 miles.  As a result, EVs 

consume 2,544 kWh annually and PHEVs consume 1,344 kWh annually.  The EV/PHEV 

registered vehicle and energy consumed forecast is shown in Table 3-5. 
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Table 3-5: EV/PHEV Forecast 

 
 

3.3.2 EV/PHEV Charging Profile 

Electric vehicles’ impact on the BED system profile will depend on when owners choose to 

charge their vehicles.  Off-peak charging can be promoted by providing TOU incentive 

electric rates for vehicle owners.  The forecast uses 2 different charging profiles, a traditional 

profile in which vehicles begin to charge as owner return home, the other an incentive profile 

in which charging is delayed to later in the evening with the use of a TOU incentive rate.  

BED assumes that 80% of the EV energy will be charged based on the incentive profile and 

20% on the traditional charge profile.  All PHEV energy is assumed to be charged on the 

traditional profile.  Figure 17 shows the traditional and incentive EV/PHEV charging 

profiles. 

 

Year EV Count

PHEV 

Count

Total 

Count EV MWh

PHEV 

MWh

Total 

MWh

2019 145 149 294 369 200 569

2020 183 176 358 464 236 701

2021 228 203 431 580 273 854

2022 296 238 534 752 320 1,072

2023 388 278 666 987 373 1,360

2024 519 325 844 1,321 437 1,758

2025 679 372 1,051 1,728 500 2,228

2026 873 426 1,299 2,222 572 2,794

2027 1,120 492 1,611 2,848 661 3,509

2028 1,421 569 1,990 3,615 765 4,380

2029 1,808 666 2,474 4,601 895 5,496

2030 2,312 787 3,099 5,883 1,058 6,940

2031 2,905 923 3,827 7,390 1,240 8,630

2032 3,554 1,063 4,616 9,040 1,428 10,469

2033 4,267 1,208 5,475 10,854 1,624 12,478

2034 5,034 1,355 6,390 12,808 1,822 14,629

2035 5,848 1,501 7,348 14,876 2,017 16,893

2036 6,657 1,633 8,291 16,936 2,195 19,131

2037 7,451 1,750 9,201 18,954 2,353 21,307

2038 8,222 1,851 10,073 20,917 2,488 23,405

2039 8,966 1,935 10,901 22,810 2,600 25,411

2040 9,681 2,001 11,682 24,628 2,689 27,317
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Figure 17: EV/PHEV Charging Profile 

 
 

 

3.3 Energy, Peak, and Hourly Load Forecast 

3.3.1 Energy Forecast 

The BED energy forecast is derived directly from the sales forecast by applying a monthly 

energy adjustment factor to the monthly sales forecast.  The energy adjustment factor 

includes line losses and any differences in timing between monthly sales estimates and 

delivered energy (unaccounted for energy).  Adjustment factors are calculated as the average 

monthly ratio of energy to sales.  Figure 18 shows the resulting monthly sales and energy 

forecast. 
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Figure 18:  Long-Term Energy and Sales Forecast (MWh) 

 
 

 

3.3.2 Peak Forecast 

The long-term system peak forecast is based on a monthly peak linear regression model that 

relates monthly peak demand to heating, cooling, and base load requirements: 

 

𝑃𝑒𝑎𝑘𝑚 = 𝐵0 + 𝐵1𝐻𝑒𝑎𝑡𝑉𝑎𝑟𝑚 + 𝐵2𝐶𝑜𝑜𝑙𝑉𝑎𝑟𝑚 + 𝐵3𝐵𝑎𝑠𝑒𝑉𝑎𝑟𝑚 + 𝑒𝑚 

 

The model variables (HeatVarm, CoolVarm, and BaseVarm) incorporate changes in heating, 

cooling, and base-use energy requirements derived from the class sales forecast models as 

well as peak-day weather conditions. 

 

Heating and Cooling Model Variables 

Heating and cooling requirements are derived from the sales forecast models and incorporate 

customer growth, economic activity, changes in end-use saturation, and improving end-use 

efficiency.  Estimated model coefficients for the heating (XHeat) and cooling variables 

(XCool) combined with heating and cooling variable for normal weather conditions 

(NrmXHeat and NrmXCool) gives an estimate of the monthly heating and cooling load 

requirements.  Heating requirements are calculated as: 

 

• 𝐻𝑒𝑎𝑡𝐿𝑜𝑎𝑑𝑚 = 𝐵1 × 𝑅𝑒𝑠𝑁𝑟𝑚𝑋𝐻𝑒𝑎𝑡𝑚 + 𝐶1 × 𝐶𝑜𝑚𝑁𝑟𝑚𝑋ℎ𝑒𝑎𝑡𝑚 

 

Energy 

Sales 



BURLINGTON ELECTRIC DEPARTMENT  
 

Long-Term Energy and Demand Forecast Page 32 

B1 and C1 are the coefficients on XHeat in the residential and commercial models. 

 

Cooling requirements are estimated in a similar manner: 

 

• 𝐶𝑜𝑜𝑙𝐿𝑜𝑎𝑑𝑚 = 𝐵2 × 𝑅𝑒𝑠𝑁𝑟𝑚𝑋𝐶𝑜𝑜𝑙𝑚 + 𝐶2 × 𝐶𝑜𝑚𝑁𝑟𝑚𝑋𝐶𝑜𝑜𝑙𝑚  

 

B2 and C2 are the coefficients on XCool in the residential and commercial models.   

 

Figure 19 and Figure 20 show resulting historical (weather normalized) and forecasted 

heating and cooling load requirements. 
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Figure 19:  Annual Heating Load (MWh) 

 
 

Figure 20:  Annual Cooling Load (MWh) 
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The impact of peak-day CDD will increase over time with increasing cooling requirements; 

peak-days HDD impacts will decline given projected decline in heating related load. Peak-

day HDD and CDD impact are captured by interacting peak-day HDD and CDD with 

monthly heating and cooling load requirements.  Heating and cooling load requirements are 

indexed to a base year (2015).  The peak model heating and cooling variables are calculated 

as:  

 

• 𝐻𝑒𝑎𝑡𝑉𝑎𝑟𝑚 = 𝐻𝑒𝑎𝑡𝐿𝑜𝑎𝑑𝐼𝑑𝑥𝑚 × 𝑃𝑘𝐻𝐷𝐷𝑚 

• 𝐶𝑜𝑜𝑙𝑉𝑎𝑟𝑚 = 𝐶𝑜𝑜𝑙𝐿𝑜𝑎𝑑𝐼𝑑𝑥𝑚 × 𝑃𝑘𝐶𝐷𝐷𝑚 

 

Figure 21 shows the resulting peak model heating and cooling variables.  

 

Figure 21: Peak Model Heating and Cooling Variables (degree days) 

 
 

Base Load Variable 

The base-load variable (BaseVarm) captures the non-weather sensitive load at the time of the 

monthly peak.  The base load variable is defined as: 

 

𝐵𝑎𝑠𝑒𝑉𝑎𝑟𝑚 = 𝑅𝑒𝑠𝑂𝑡ℎ𝑒𝑟𝐶𝑃𝑚 + 𝐶𝑜𝑚𝑂𝑡ℎ𝑒𝑟𝐶𝑃𝑚 + 𝑆𝑡𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔𝐶𝑃𝑚 

 

Where 

HeatVar45m 

CoolVar50m 

CoolVar70m 
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• ResOther CPm = residential coincident peak load 

• ComOther CPm = commercial coincident peak load 

• StLightingCPm = street lighting coincident peak load 

 

Base load sales estimates are derived for each revenue class by subtracting out heating and 

cooling load requirements from total sales forecast.  Using the SAE modeling framework, 

class annual base load requirements are then allocated to end-uses at the time of monthly 

peak demand.  For example, the residential water heating coincident peak load estimate is 

derived as: 

 

𝑅𝑒𝑠𝑊𝑎𝑡𝑒𝑟𝐶𝑃𝑚 = 𝑅𝑒𝑠𝐵𝑎𝑠𝑒𝐿𝑜𝑎𝑑𝑎 × (
𝑅𝑒𝑠𝑊𝑎𝑡𝑒𝑟𝐸𝐼𝑎

𝑅𝑒𝑠𝐵𝑎𝑠𝑒𝐸𝐼𝑎
⁄ ) × 𝑅𝑒𝑠𝑊𝑎𝑡𝑒𝑟𝐹𝑟𝑎𝑐𝑚 

 

 

Where  

 

• ResBaseLoad = Annual non-residential non-weather sensitive sales 

• ResWaterEI = Annual water heating intensity (water use per household)  

• ResBaseEI = Annual base-use intensity (non-weather sensitive use per 

household)  

• ResWaterFrac = Monthly fraction of usage at time of peak  

 

End-use coincident peak load estimates are aggregated to revenue class and then summed 

across revenue classes.  Figure 22 shows the peak model base load variable.  
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Figure 22:  Base Load Variable 

 
 

Model Results 

The peak model is estimated over the period January 2010 to December 2018.  The model 

explains monthly peak variation well with an adjusted R2 of 0.95 and an in-sample MAPE of 

2.0%.  Figure 23 shows actual and predicted results.  Model statistics and parameters are 

included in Appendix A.  
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Figure 23:  Peak Model (MW) 

 
 

The peak demand forecast is adjusted for solar load and electric vehicle impacts.  Table 3-6 

shows total energy and peak demand. 
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Table 3-6:  Energy and Peak Forecast 
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3.3.3 System Hourly Load Forecast 

The baseline hourly load forecast is the sum of the residential, commercial, and street 

lighting hourly load forecasts. Class hourly load forecasts are derived by combining class 

hourly load profiles estimated from AMI data with class sales forecast. Hourly loads are 

expressed as a function of daily HDD and CDD, binary for day of the week, months, seasons, 

and holidays, and hours of light.    

 

Figure 24 shows the residential and commercial load profiles by season.   

 

Figure 24:  Class Profiles by Season 

 
 

Class hourly load forecasts are constructed using MetrixLT Batch Transforms.  Batch 

Transforms are used to combine class sales forecast with the hourly profile forecast; the 

forecast is also adjusted for line losses.  Figure 25 and Figure 26 show the residential and 

commercial hourly load forecast for 2019.   
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Figure 25: Residential Hourly Load Forecast 

 
 

Figure 26: Commercial Hourly Load Forecast 

 
 

Baseline system hourly load forecast is generated through 2040 by adding residential, 

commercial, and street lighting load and calibrating this to system energy and peak demand 

forecast.  Figure 27 shows the resulting 2040 baseline hourly load forecast.   
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Figure 27: System Hourly Baseline Load Forecast (2040) 

 
 

Adjustment for New Technologies 

The baseline system load forecast is adjusted for PV and EV adoption. PV reduces system 

load and demand while EV adds to baseline system load. Figure 28 shows projected PV and 

EV hourly loads for the July peak week in 2040.   

 

Figure 28:  Solar and EV Loads (MWh) 

 
 

By 2040, EVs add 9 MW of load at 11:00 at night and solar reduces load by 5 MW at noon. 

The adjusted system load and projected peaks are derived by adding PV and EV hourly load 

forecast. The combined impact is to shift load and peak to early evening.  Figure 29 

compares the baseline system load with the adjusted system load forecast. 
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Figure 29:  Baseline vs. Adjusted Loads (MWh) 
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4 Forecast Scenarios 

Peak Weather Scenario 

Peak forecast is also estimated for more extreme peak-producing weather conditions. Peak-

day weather is calculated for 1 in 10-year conditions (or 90% probability case). The 90% 

probability peak weather is derived by finding the 90th percentile of historical peak-day 

weather across the last twenty years. The 90% probability peak-day CDD (base 70 degrees) 

is 15.9.  This compares with expected peak-day temperature of 12.8 CDD. The 90% peak 

probability temperature is 24% higher than expected peak-day temperature and results in a 

peak demand forecast that is approximately 4% higher than the base case. Table 4-1 

compares baseline and extreme weather peak forecasts.  

 

Table 4-1:  Comparison with Baseline Peak Forecast (MW) 
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Electrification Scenarios 

 

BED defined two electrification scenarios – each is to achieve net zero emission targets by 

specific target years – 2030 (Scenario 30) and 2040 (Scenario 40); the 2030 scenario is the 

more aggressive scenario.  BED provided additional expected electric sales for heating, 

cooling, water heating in the residential sector and heating, water heating, and cooking in the 

commercial sector. Each scenario also includes higher EV and solar market penetration as 

well as higher EE program savings.  Figure 30 compares the hourly load impacts with the 

base case. 

   

Figure 30:  Scenario Load Comparison 

 
 

With strong increase in cold climate heat pump growth, peak demand shifts from the summer 

months to winter months. By 2030, the aggressive electrification scenario results in peak 

demand that is more than double the base-case peak demand forecast.  Tables 4-2 and 4-3 

compare energy and demand forecasts against the base-case. 
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Table 4-2:  Energy (MWh) Scenario Comparison 
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Table 4-3:  Peak Scenario Comparison (MW) 
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5 Appendix A 

Residential Average Use Model 
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Residential Customer Model 
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Commercial Sales Model 
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Commercial Customer Model 
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Other Sales Model 
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Peak Model 
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6 Appendix B:  
Residential SAE Modeling Framework 

The traditional approach to forecasting monthly sales for a customer class is to develop an 

econometric model that relates monthly sales to weather, seasonal variables, and economic 

conditions.  From a forecasting perspective, econometric models are well suited to identify 

historical trends and to project these trends into the future.  In contrast, the strength of the 

end-use modeling approach is the ability to identify the end-use factors that are drive energy 

use.  By incorporating end-use structure into an econometric model, the statistically adjusted 

end-use (SAE) modeling framework exploits the strengths of both approaches.  

 

There are several advantages to this approach. 
 

• The equipment efficiency and saturation trends, dwelling square footage, and 

thermal shell integrity changes embodied in the long-run end-use forecasts are 

introduced explicitly into the short-term monthly sales forecast.  This provides a 

strong bridge between the two forecasts. 

• By explicitly introducing trends in equipment saturations, equipment efficiency, 

dwelling square footage, and thermal integrity levels, it is easier to explain 

changes in usage levels and changes in weather-sensitivity over time. 

• Data for short-term models are often not sufficiently robust to support estimation 

of a full set of price, economic, and demographic effects.  By bundling these 

factors with equipment-oriented drivers, a rich set of elasticities can be 

incorporated into the final model. 

 

This section describes the SAE approach, the associated supporting SAE spreadsheets, and 

the MetrixND project files that are used in the implementation.  The source for the SAE 

spreadsheets is the 2018 Annual Energy Outlook (AEO) database provided by the Energy 

Information Administration (EIA). 

 

6.1 Statistically Adjusted End-Use Modeling Framework 

The statistically adjusted end-use modeling framework begins by defining energy use 

(USEy,m) in year (y) and month (m) as the sum of energy used by heating equipment (Heaty,m), 

cooling equipment (Cooly,m), and other equipment (Othery,m).  Formally, 

 

m,ym,ym,ym,y OtherCoolHeatUSE ++=  (1) 
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Although monthly sales are measured for individual customers, the end-use components are 

not.  Substituting estimates for the end-use elements gives the following econometric 

equation. 

 

mm3m2m1m XOtherbXCoolbXHeatbaUSE ++++=  (2) 

 

XHeatm, XCoolm, and XOtherm are explanatory variables constructed from end-use 

information, dwelling data, weather data, and market data.  As will be shown below, the 

equations used to construct these X-variables are simplified end-use models, and the X-

variables are the estimated usage levels for each of the major end uses based on these 

models.  The estimated model can then be thought of as a statistically adjusted end-use 

model, where the estimated slopes are the adjustment factors. 

 

6.1.1 Constructing XHeat 

As represented in the SAE spreadsheets, energy use by space heating systems depends on the 

following types of variables. 
 

• Heating degree days 

• Heating equipment saturation levels 

• Heating equipment operating efficiencies 

• Average number of days in the billing cycle for each month 

• Thermal integrity and footage of homes 

• Average household size, household income, and energy prices 

 

The heating variable is represented as the product of an annual equipment index and a 

monthly usage multiplier.  That is,   

 

mymymy HeatUseHeatIndexXHeat ,,, =  (3) 

Where: 

• XHeaty,m  is estimated heating energy use in year (y) and month (m)  

• HeatIndexy,m  is the monthly index of heating equipment 

• HeatUsey,m  is the monthly usage multiplier 

 

The heating equipment index is defined as a weighted average across equipment types of 

equipment saturation levels normalized by operating efficiency levels.  Given a set of fixed 

weights, the index will change over time with changes in equipment saturations (Sat), 

operating efficiencies (Eff), building structural index (StructuralIndex), and energy prices.  

Formally, the equipment index is defined as: 
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The StructuralIndex is constructed by combining the EIA’s building shell efficiency index 

trends with surface area estimates, and then it is indexed to the 2009 value:  

 

0909 aSurfaceArencyIndexellEfficieBuildingSh

aSurfaceArencyIndexellEfficieBuildingSh
IndexStructural

yy

y



=  (5) 

 

The StructuralIndex is defined on the StructuralVars tab of the SAE spreadsheets.  Surface 

area is derived to account for roof and wall area of a standard dwelling based on the regional 

average square footage data obtained from EIA.  The relationship between the square footage 

and surface area is constructed assuming an aspect ratio of 0.75 and an average of 25% two-

story and 75% single-story.  Given these assumptions, the approximate linear relationship for 

surface area is:  

 

yy FootageaSurfaceAre += 44.1892  (6) 

 

In Equation 4, 2009 is used as a base year for normalizing the index.  As a result, the ratio on 

the right is equal to 1.0 in 2009.  In other years, it will be greater than 1.0 if equipment 

saturation levels are above their 2009 level.  This will be counteracted by higher efficiency 

levels, which will drive the index downward.  The weights are defined as follows. 

 

Type
Type

Type HeatShare
HH

Energy
Weight 09

09

09 =  (7) 

 

In the SAE spreadsheets, these weights are referred to as Intensities and are defined on the 

EIAData tab.  With these weights, the HeatIndex value in 2009 will be equal to estimated 

annual heating intensity per household in that year.  Variations from this value in other years 

will be proportional to saturation and efficiency variations around their base values. 
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For electric heating equipment, the SAE spreadsheets contain two equipment types:  electric 

resistance furnaces/room units and electric space heating heat pumps.  Examples of weights 

for these two equipment types for the U.S. are given in Table 6-1. 

 

Table 6-1:  Electric Space Heating Equipment Weights 

Equipment Type Weight (kWh) 

Electric Resistance Furnace/Room units 255 

Electric Space Heating Heat Pump 0 

 

Data for the equipment saturation and efficiency trends are presented on the Shares and 

Efficiencies tabs of the SAE spreadsheets.  The efficiency for electric space heating heat 

pumps are given in terms of Heating Seasonal Performance Factor [BTU/Wh], and the 

efficiencies for electric furnaces and room units are estimated as 100%, which is equivalent 

to 3.41 BTU/Wh. 

 

Price Impacts.  In the 2007 version of the SAE models, the Heat Index has been extended to 

account for the long-run impact of electric and natural gas prices.  Since the Heat Index 

represents changes in the stock of space heating equipment, the price impacts are modeled to 

play themselves out over a ten year horizon.  To introduce price effects, the Heat Index as 

defined by Equation 4 above is multiplied by a 10 year moving average of electric and gas 

prices.  The level of the price impact is guided by the long-term price elasticities.  Formally,  
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 (8) 

 

Since the trends in the Structural index (the equipment saturations and efficiency levels) are 

provided exogenously by the EIA, the price impacts are introduced in a multiplicative form.  

As a result, the long-run change in the Heat Index represents a combination of adjustments to 

the structural integrity of new homes, saturations in equipment and efficiency levels relative 

to what was contained in the base EIA long-term forecast. 
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Heating system usage levels are impacted on a monthly basis by several factors, including 

weather, household size, income levels, prices, and billing days.  The estimates for space 

heating equipment usage levels are computed as follows: 
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 (9) 

Where: 

 

• BDays is the number of billing days in year (y) and month (m), these values are 

normalized by 30.5 which is the average number of billing days 

• WgtHDD is the weighted number of heating degree days in year (y) and month (m). 

This is constructed as the weighted sum of the current month's HDD and the prior 

month's HDD.  The weights are 75% on the current month and 25% on the prior 

month. 

• HDD is the annual heating degree days for 2005 

• HHSize is average household size in a year (y) 

• Income is average real income per household in year (y) 

• ElecPrice is the average real price of electricity in month (m) and year (y) 

• GasPrice is the average real price of natural gas in month (m) and year (y) 

 

By construction, the HeatUsey,m variable has an annual sum that is close to 1.0 in the base 

year (2009).  The first two terms, which involve billing days and heating degree days, serve 

to allocate annual values to months of the year.  The remaining terms average to 1.0 in the 

base year.  In other years, the values will reflect changes in the economic drivers, as 

transformed through the end-use elasticity parameters.  The price impacts captured by the 

Usage equation represent short-term price response. 

 

6.1.2 Constructing XCool 

The explanatory variable for cooling loads is constructed in a similar manner.  The amount of 

energy used by cooling systems depends on the following types of variables.   
 

• Cooling degree days 

• Cooling equipment saturation levels 

• Cooling equipment operating efficiencies 

• Average number of days in the billing cycle for each month  

• Thermal integrity and footage of homes 

• Average household size, household income, and energy prices 
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The cooling variable is represented as the product of an equipment-based index and monthly 

usage multiplier.  That is,   

 

myymy CoolUseCoolIndexXCool ,, =  (10) 

Where 

 

• XCooly,m is estimated cooling energy use in year (y) and month (m) 

• CoolIndexy is an index of cooling equipment 

• CoolUsey,m is the monthly usage multiplier 

 

As with heating, the cooling equipment index is defined as a weighted average across 

equipment types of equipment saturation levels normalized by operating efficiency levels. 

Formally, the cooling equipment index is defined as: 
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Data values in 2005 are used as a base year for normalizing the index, and the ratio on the 

right is equal to 1.0 in 2005.  In other years, it will be greater than 1.0 if equipment saturation 

levels are above their 2005 level.  This will be counteracted by higher efficiency levels, 

which will drive the index downward.  The weights are defined as follows. 

 

Type
Type

Type CoolShare
HH

Energy
Weight 09

09

09 =  (12) 

 

In the SAE spreadsheets, these weights are referred to as Intensities and are defined on the 

EIAData tab.  With these weights, the CoolIndex value in 2009 will be equal to estimated 

annual cooling intensity per household in that year.  Variations from this value in other years 

will be proportional to saturation and efficiency variations around their base values. 
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For cooling equipment, the SAE spreadsheets contain three equipment types: central air 

conditioning, space cooling heat pump, and room air conditioning.  Examples of weights for 

these three equipment types for the U.S. are given in Table 6-2.  

 

Table 6-2:  Space Cooling Equipment Weights 

Equipment Type Weight (kWh) 

Central Air Conditioning 18 

Space Cooling Heat Pump 0 

Room Air Conditioning 145 

 

The equipment saturation and efficiency trends data are presented on the Shares and 

Efficiencies tabs of the SAE spreadsheets.  The efficiency for space cooling heat pumps and 

central air conditioning (A/C) units are given in terms of Seasonal Energy Efficiency Ratio 

[BTU/Wh], and room A/C units efficiencies are given in terms of Energy Efficiency Ratio 

[BTU/Wh]. 

 

Price Impacts.  In the 2007 SAE models, the Cool Index has been extended to account for 

changes in electric and natural gas prices.  Since the Cool Index represents changes in the 

stock of space heating equipment, it is anticipated that the impact of prices will be long-term 

in nature.  The Cool Index as defined Equation 11 above is then multiplied by a 10 year 

moving average of electric and gas prices.  The level of the price impact is guided by the 

long-term price elasticities.  Formally,  
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= 
(13) 

 

Since the trends in the Structural index, equipment saturations and efficiency levels are 

provided exogenously by the EIA, price impacts are introduced in a multiplicative form.  The 

long-run change in the Cool Index represents a combination of adjustments to the structural 

integrity of new homes, saturations in equipment and efficiency levels.  Without a detailed 

end-use model, it is not possible to isolate the price impact on any one of these concepts. 
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Cooling system usage levels are impacted on a monthly basis by several factors, including 

weather, household size, income levels, and prices.  The estimates of cooling equipment 

usage levels are computed as follows: 
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Where: 

 

• WgtCDD is the weighted number of cooling degree days in year (y) and month (m). 

This is constructed as the weighted sum of the current month's CDD and the prior 

month's CDD.  The weights are 75% on the current month and 25% on the prior 

month. 

• CDD is the annual cooling degree days for 2009. 

 

By construction, the CoolUse variable has an annual sum that is close to 1.0 in the base year 

(2009).  The first two terms, which involve billing days and cooling degree days, serve to 

allocate annual values to months of the year.  The remaining terms average to 1.0 in the base 

year.  In other years, the values will change to reflect changes in the economic driver 

changes. 

 

6.1.3 Constructing XOther 

Monthly estimates of non-weather sensitive sales can be derived in a similar fashion to space 

heating and cooling.  Based on end-use concepts, other sales are driven by: 
 

• Appliance and equipment saturation levels 

• Appliance efficiency levels 

• Average number of days in the billing cycle for each month 

• Average household size, real income, and real prices 

 

The explanatory variable for other uses is defined as follows: 

 

mymymy OtherUsedexOtherEqpInXOther ,,, =  (15) 

 

The first term on the right hand side of this expression (OtherEqpIndexy) embodies 

information about appliance saturation and efficiency levels and monthly usage multipliers. 
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The second term (OtherUse) captures the impact of changes in prices, income, household 

size, and number of billing-days on appliance utilization.   

 

End-use indices are constructed in the SAE models.  A separate end-use index is constructed 

for each end-use equipment type using the following function form. 
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Where: 

 

• Weight is the weight for each appliance type 

• Sat represents the fraction of households, who own an appliance type 

• MoMultm is a monthly multiplier for the appliance type in month (m) 

• Eff is the average operating efficiency the appliance 

• UEC is the unit energy consumption for appliances 

 

This index combines information about trends in saturation levels and efficiency levels for 

the main appliance categories with monthly multipliers for lighting, water heating, and 

refrigeration. 

 

The appliance saturation and efficiency trends data are presented on the Shares and 

Efficiencies tabs of the SAE spreadsheets.  

 

Further monthly variation is introduced by multiplying by usage factors that cut across all 

end uses, constructed as follows: 
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The index for other uses is derived then by summing across the appliances: 
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mymymy seApplianceUndexApplianceIdexOtherEqpIn ,,,  (18) 
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7 Appendix C:  

    Commercial Statistically Adjusted End-Use Model 

The traditional approach to forecasting monthly sales for a customer class is to develop an 

econometric model that relates monthly sales to weather, seasonal variables, and economic 

conditions.  From a forecasting perspective, the strength of econometric models is that they 

are well suited to identifying historical trends and to projecting these trends into the future.  

In contrast, the strength of the end-use modeling approach is the ability to identify the end-

use factors that are driving energy use.  By incorporating end-use structure into an 

econometric model, the statistically adjusted end-use (SAE) modeling framework exploits 

the strengths of both approaches.  

 

There are several advantages to this approach. 
 

• The equipment efficiency trends and saturation changes embodied in the long-run 

end-use forecasts are introduced explicitly into the short-term monthly sales 

forecast.  This provides a strong bridge between the two forecasts. 
 

• By explicitly introducing trends in equipment saturations and equipment efficiency 

levels, it is easier to explain changes in usage levels and changes in weather-

sensitivity over time.  
 

• Data for short-term models are often not sufficiently robust to support estimation 

of a full set of price, economic, and demographic effects.  By bundling these 

factors with equipment-oriented drivers, a rich set of elasticities can be built into 

the final model. 

 

This document describes this approach, the associated supporting Commercial SAE 

spreadsheets, and MetrixND project files that are used in the implementation. The source for 

the commercial SAE spreadsheets is the 2018 Annual Energy Outlook (AEO) database 

provided by the Energy Information Administration (EIA). 

 

 

7.1 Commercial Statistically Adjusted End-Use Model Framework 

The commercial statistically adjusted end-use model framework begins by defining energy 

use (USEy,m) in year (y) and month (m) as the sum of energy used by heating equipment 

(Heaty,m), cooling equipment (Cooly,m) and other equipment (Othery,m).  Formally, 
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m,ym,ym,ym,y OtherCoolHeatUSE ++=  (1) 

 

Although monthly sales are measured for individual customers, the end-use components are 

not.  Substituting estimates for the end-use elements gives the following econometric 

equation. 

 

mm3m2m1m XOtherbXCoolbXHeatbaUSE ++++=  (2) 

 

Here, XHeatm, XCoolm, and XOtherm are explanatory variables constructed from end-use 

information, weather data, and market data.  As will be shown below, the equations used to 

construct these X-variables are simplified end-use models, and the X-variables are the 

estimated usage levels for each of the major end uses based on these models.  The estimated 

model can then be thought of as a statistically adjusted end-use model, where the estimated 

slopes are the adjustment factors.   

 

 

7.1.1 Constructing XHeat 

As represented in the Commercial SAE spreadsheets, energy use by space heating systems 

depends on the following types of variables.   
 

◼ Heating degree days, 

◼ Heating equipment saturation levels, 

◼ Heating equipment operating efficiencies, 

◼ Average number of days in the billing cycle for each month, and 

◼ Commercial output and energy price. 

 

The heating variable is represented as the product of an annual equipment index and a 

monthly usage multiplier.  That is,   

 

m,yym,y HeatUseHeatIndexXHeat =  (3) 

 

where, XHeaty,m is estimated heating energy use in year (y) and month (m),  

HeatIndexy is the annual index of heating equipment, and  

HeatUsey,m is the monthly usage multiplier. 

 

The heating equipment index is composed of electric space heating equipment saturation 

levels normalized by operating efficiency levels.  The index will change over time with 
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changes in heating equipment saturations (HeatShare) and operating efficiencies (Eff).  

Formally, the equipment index is defined as: 
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In this expression, 2013 is used as a base year for normalizing the index.  The ratio on the 

right is equal to 1.0 in 2013.  In other years, it will be greater than one if equipment 

saturation levels are above their 2013 level.  This will be counteracted by higher efficiency 

levels, which will drive the index downward.  Base year space heating sales are defined as 

follows. 
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Here, base-year sales for space heating is the product of the average space heating intensity 

value and the ratio of total commercial sales in the base year over the sum of the end-use 

intensity values.  In the Commercial SAE Spreadsheets, the space heating sales value is 

defined on the BaseYrInput tab.  The resulting HeatIndexy value in 2013 will be equal to the 

estimated annual heating sales in that year.  Variations from this value in other years will be 

proportional to saturation and efficiency variations around their base values.   

 

Heating system usage levels are impacted on a monthly basis by several factors, including 

weather, commercial level economic activity, prices and billing days.  Using the COMMEND 

default elasticity parameters, the estimates for space heating equipment usage levels are 

computed as follows: 
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where, BDays is the number of billing days in year (y) and month (m), these values are 

normalized by 30.5 which is the average number of billing days  

WgtHDD is the weighted number of heating degree days in year (y) and month (m). 

This is constructed as the weighted sum of the current month's HDD and the prior 
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month's HDD.  The weights are 75% on the current month and 25% on the prior 

month.  

HDD is the annual heating degree days for 2013, 

Output is a real commercial output driver in year (y),  

Price is the average real price of electricity in month (m) and year (y), 

 

By construction, the HeatUsey,m variable has an annual sum that is close to one in the base 

year (2013).  The first two terms, which involve billing days and heating degree days, serve 

to allocate annual values to months of the year.  The remaining terms average to one in the 

base year.  In other years, the values will reflect changes in commercial output and prices, as 

transformed through the end-use elasticity parameters.  For example, if the real price of 

electricity goes up 10% relative to the base year value, the price term will contribute a 

multiplier of about .98 (computed as 1.10 to the -0.18 power).   

 

 

7.1.2 Constructing XCool 

The explanatory variable for cooling loads is constructed in a similar manner.  The amount of 

energy used by cooling systems depends on the following types of variables.   
 

◼ Cooling degree days, 

◼ Cooling equipment saturation levels, 

◼ Cooling equipment operating efficiencies,  

◼ Average number of days in the billing cycle for each month, and 

◼ Commercial output and energy price. 

 

The cooling variable is represented as the product of an equipment-based index and monthly 

usage multiplier.  That is,   

 

 (7) 

where, XCooly,m is estimated cooling energy use in year (y) and month (m),  

CoolIndexy is an index of cooling equipment, and  

CoolUsey,m is the monthly usage multiplier. 

 

As with heating, the cooling equipment index depends on equipment saturation levels 

(CoolShare) normalized by operating efficiency levels (Eff). Formally, the cooling equipment 

index is defined as: 

 

m,yym,y CoolUseCoolIndexXCool =
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Data values in 2013 are used as a base year for normalizing the index, and the ratio on the 

right is equal to 1.0 in 2013.  In other years, it will be greater than one if equipment 

saturation levels are above their 2013 level.  This will be counteracted by higher efficiency 

levels, which will drive the index downward.  Estimates of base year cooling sales are 

defined as follows. 
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Here, base-year sales for space cooling is the product of the average space cooling intensity 

value and the ratio of total commercial sales in the base year over the sum of the end-use 

intensity values.  In the Commercial SAE Spreadsheets, the space cooling sales value is 

defined on the BaseYrInput tab.  The resulting CoolIndex value in 2013 will be equal to the 

estimated annual cooling sales in that year.  Variations from this value in other years will be 

proportional to saturation and efficiency variations around their base values.   

 

Cooling system usage levels are impacted on a monthly basis by several factors, including 

weather, economic activity levels and prices.  Using the COMMEND default parameters, the 

estimates of cooling equipment usage levels are computed as follows: 
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where,  WgtCDD is the weighted number of cooling degree days in year (y) and month (m). 

This is constructed as the weighted sum of the current month's CDD and the prior 

month's CDD.  The weights are 75% on the current month and 25% on the prior 

month.   

CDD is the annual cooling degree days for 2013. 

 

By construction, the CoolUse variable has an annual sum that is close to one in the base year 

(2013).  The first two terms, which involve billing days and cooling degree days, serve to 

allocate annual values to months of the year.  The remaining terms average to one in the base 
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year.  In other years, the values will change to reflect changes in commercial output and 

prices.   

 

 

7.1.3 Constructing XOther 

Monthly estimates of non-weather sensitive sales can be derived in a similar fashion to space 

heating and cooling.  Based on end-use concepts, other sales are driven by: 
 

◼ Equipment saturation levels, 

◼ Equipment efficiency levels, 

◼ Average number of days in the billing cycle for each month, and 

◼ Real commercial output and real prices. 

 

The explanatory variable for other uses is defined as follows: 

 

m,ym,ym,y OtherUseOtherIndexXOther =  (11) 

 

The second term on the right hand side of this expression embodies information about 

equipment saturation levels and efficiency levels.  The equipment index for other uses is 

defined as follows: 
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where,  Weight is the weight for each equipment type, 

Share represents the fraction of floor stock with an equipment type, and  

Eff is the average operating efficiency. 

 

This index combines information about trends in saturation levels and efficiency levels for 

the main equipment categories.  The weights are defined as follows.  
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Further monthly variation is introduced by multiplying by usage factors that cut across all 

end uses, constructed as follows: 
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In this expression, the elasticities on output and real price are computed from the COMMEND 

default values.   
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Appendix – Controllable Loads 
 

One of the outcomes of the 2016 IRP was that BED continued researching commercially 

available measures and technologies that would allow BED to control customer loads remotely 

and/or through incentive programs. To this end, BED has been focused on several end-use loads 

that can be strategically controlled through assigned schedules or in real-time (automated when 

possible) to provide Wholesale Electric Market (“WEM”) benefits. End-use loads of interest 

have included the thermal heating and cooling space with heat pump and commercial HVAC 

controls along with research into “smart” level 1 electric vehicle charging. The sections below 

outline the research and development BED has conducted related to load control. 

Heat Pump Controls 

Heat pumps are a significant focus for BED as they play a crucial role in advancing the 2030 Net 

Zero Energy Roadmap and will 

contribute significantly to 

peak coincident demand if 

left uncontrolled. Figure 1 

shows the contribution of 

commercial and residential 

electric heating to morning 

and evening peak hours.  

To date, there are few 

commercialized solutions 

that provide device 

aggregators with accurate 

submetering and seamless 

control of heat pump 

technologies. Additionally, research into customer flexibility regarding thermostatic setpoint 

adjustments is lacking. It is important to better understand the range of acceptable temperature 

adjustments to avoid severely impacting quality of service for the customer while maximizing 

load management.  

BED is working to launch a pilot program with Packetized Energy that will deploy heat pump 

controls with the goals of proving out the operations and accuracy of the controls and 

submetering and gaining further insight into customer flexibility with size and duration of 

setpoint adjustments. Initially, this pilot will focus on Mitsubishi air source heat pumps, but 

 

Figure 1: Net Zero Energy 2030 Disaggregated Load Profile 
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Packetized Energy seeks to engage other manufacturers going forward. BED is currently using 

Sensibo and Emporia devices at its offices on 585 Pine St. to control and submeter heat pumps.  

Level 1 EV Charger 

Another research project that BED has engaged in is to identify a suitable smart level 1 electric 

vehicle charger that provides accurate submetering and ideally the ability for load control. This 

is of interest to BED as installation of level 2 charging at home can require expensive wiring and 

in some cases electrical panel upgrades, and many owners of plug-in hybrid electric vehicles or 

those who don’t make frequent long trips can fully charge with a level 1 charger. Identifying 

such a device could expand the number of customers enrolled in the EV rate. 

Currently, BED has been working and researching several companies that are looking to 

develop a commercialized product. None of these companies have yet gained the necessary UL 

certification. BED will continue to monitor this technology as it advances and evaluate these 

products as they reach commercialization.  



BED Staff Comments on report on “Economic Impact of McNeil Station” by Innovative Natural 

Resource Solutions dated 5/7/2020 (the “Report”). 

 

BED finds the report informative, particularly as relates to the impact of McNeil’s operations on the 

Vermont economy (relative to the direct costs incurred by the McNeil Joint Owners).  BED would like to 

offer some additional context for the report as the report was contracted for as an independent study 

and BED staff did not actually edit the report proper.  The comments relate to the: 

1. The totality of McNeil’s financial statements for expenses relative to McNeil’s market 

revenues. 

2. Known and potential changes to the 2019 levels of revenue for energy, RECs, capacity, and 

other market values 

3. Activities under way to improve McNeil’s economics 

4. BED’s conclusions regarding the continued operation of McNeil for the foreseeable future. 

 

McNeil’s financial statements (expenses) and relative economics 

McNeil’s financial statements show 2019 expenses of $24,093,818 (which is consistent with page 3 of 

the Report).  The Report indicates that this is outweighed by the direct economic benefit of $25.3 million 

and dramatically outweighed by the direct, indirect and induced impact to Vermont of $49.8 million and 

to the local region of $66.5 million.  Depreciation and interest on debt related to McNeil amount to an 

additional $1,590,110. 

In CY19 McNeil expensed a major turbine overhaul that typically occurs about every seven years (or 

50,000 equivalent operating hours).  In prior overhauls, BED had amortized this expense over a seven-

year period, but that accounting treatment was not permitted in 2019 pursuant to the PUC’s draft rules 

on accounting orders.  Nevertheless, this non-annual expense increased the O&M expenses for McNeil 

by roughly $2.3 million in calendar year 2019.  Adjusted for this, a 2019 cost for McNeil would have been 

on the order of $23,712,499 including depreciation and interest, but only including 1/7 of the major 

overhaul expense) (or $0.1043 per KWH produced). 

Comparisons to the costs Vermont utilities incur to support the Ryegate facility are informative.  

McNeil’s average cost for 2019 is very similar to the current contract rate for Ryegate of $0.1035 per 

kwh (within 0.75%).  If one compares the McNeil cost to the Ryegate contract rate the following items 

are noteworthy and more than compensate for the small cost difference: 

1. Currently under the Ryegate contract the utilities are only entitled to 50% of the Renewable 

Energy Credits (RECS). 

2. McNeil average energy revenues per MWH from ISO-NE are 8-12% higher than those of 

Ryegate for 2019.  BED tries to optimize McNeil’s output based on market price signals 

whereas Ryegate generally operates base load/all hours.  As noted below BED hopes its new 

wood purchasing strategy will further increase McNeil’s relative advantage in this respect. 



3. McNeil is owned by the Vermont utilities, and any efficiency cost savings, sch as those that 

may result from activities described in more detail below, benefit the VT retail electricity 

customers directly.  

 

CY19 Revenues Per Unit and Potential Changes in Those Values 

The key value streams for McNeil in CY19 were: 

 Source   Revenue per Unit & Units Percent of Revenues 

Energy   $34.86 per MWH  39.7% 

 RECs   $30.99 per MWH  35.3% 

 Capacity  $8.29 per kW-Mo  24.8% 

 VAR Payments  $25,000 annually  0.1% 

 

Energy prices are not expected to fall from these levels.  In fact increase operation in the winter relative 

to other times of the year, and potentially additional cycling capability with the repair of the water wall 

and replacement of the economizer tubes could increase the average revenue received per MWH even 

without an increase in the energy markets. 

REC prices throughout the trading curve are generally averaging better than the value received in 2019, 

and BED is pursuing contracts at these higher prices. 

CT 1, 2020 - $41.00 bid 

CT 1, 2021 - $34.00 bid 

 

CT 1, 2022 - $34.50 bid 

CT 1, 2023 - $30.00 bid 

CT 1, 2024 - $30.00 bid 

 

Capacity revenues will fall through at least May 2024 based on the currently cleared capacity markets.  

Capacity revenues however only provided ¼ of McNeil’s revenue in 2019. 

The above comments are reflected in general terms in a comment at the bottom of page 12 of the 

Report. 

See the discussion of key variables in the body of the IRP for additional discussion on these markets. 

 

Efficiency/Operational Improvement Activities Underway at McNeil 

BED continues to engage in improvements to the operations of McNeil wherever an opportunity 

appears to exist. 



District energy represents an opportunity to utilize heat from McNeil for purposes other than the 

production of electric energy.  To the extent waste heat can be used, there will be an improvement in 

McNeil’s overall efficiency. 

The McNeil Joint Owners are developing a pilot project for automated settings to control combustion 

efficiency with ThermoAI (a company that participated in the 2020 DeltaClimeVT program).  Modifying 

air flow to reflect actual (near real time) ambient conditions has a potential to improve McNeil’s 

effective heat rate. 

In 2020 McNeil revised its wood contracting to better align wood flow with wholesale energy market 

prices through a combination of base load, seasonal, and on-call wood supply contracts.  This is also 

hoped to permit suppliers improved ability to plan for their own operations. 

Improvements in efficiencies and production timing are hoped to improve the McNeil economics 

through a combination of reduced cost and increased average revenue per MWH. 

 

BED’s Conclusions 

McNeil is currently above market prices (reflected by a market revenue less than its cost to the Vermont 

utilities).  On the other hand, no equivalent replacement in Vermont exists, or is likely.  Replacing McNeil 

with a resource from other areas in New England would have the potential to save the McNeil Joint 

Owners a modest amount of money under present market conditions, but doing so would have a severe 

adverse economic impact on the Vermont and near regional economy as is indicated in the report.  

Potential reliability impacts of the loss of Vermont’s largest energy producers have not been modelled in 

detail but the potential for adverse reliability under certain transmission conditions may exist. 

This conclusion is supported by the consideration related to potential actions by the VT Legislature 

regarding the Ryegate generating facility this legislative season.  In sponsoring the pending bill to extend 

the current 10-year contract with Ryegate it was noted: 

o “There’s a lot of indirect employment that’s provided by having this plant. The plant 
uses low grade wood which there’s really limited market for that wood. A lot of the 
plants over in New Hampshire and Maine have closed so there isn’t a readily available 
market for a lot of these wood chips which are very important to get that junk wood, 
really low grade wood, to get that cleaned up and out of our forest and into something 
like electricity which is a renewable energy source.” 

 
And as noted in the committee floor report supporting the bill, McNeil harvests sustainability, is 
exploring efficiency improvements including district energy, and is the largest single purchaser of low-
grade wood chips in Vermont (including the Ryegate station). 
   
With the retirement of Vermont Yankee, McNeil is now the largest energy producing resource in 

Vermont, and moreover is one of the very few renewable resources capable of controlling its output 

based on market conditions (i.e. in industry terms McNeil is a “intermediate dispatchable renewable 

resource”.  Lastly, McNeil has the advantage from reliability terms of producing its energy at the center 

of the largest load pocket in Vermont.  McNeil is a critical renewable asset for BED and for Vermont and 

a key component of Burlington’s Net Zero goal and at this point BED intends its continued operation.   
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Introduction 

Burlington Electric Department’s McNeil Station is a 50 MW wood-fired electricity generating facilityi 
that operates in the ISO-New England region.  This facility provides an important market for biomass 
chips, produced in the forests of Vermont and nearby New York, and provides electricity to consumers 
in the City of Burlington, Vermont and surrounding communities, as well as the entire ISO-New England 
market.   

Innovative Natural Resource Solutions LLC (INRS) was commissioned by Burlington Electric Department 
to analyze the economic impacts associated with operations of McNeil Station. This economic analysis is 
for one year, and uses 2019 data whenever possible.  There were a few occasions when 2019 data was 
not available; in those cases, the latest available data was utilized. 
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Executive Summary 

In 2019, the cost to operate McNeil Station – inclusive of wood fuel, operations, maintenance and other 
expenses was $24,093,818. The facility generated an estimated $19,933,373 in revenue – from the sale 
of electricity, Renewable Energy Certificates (RECs), capacity and Volt Ampere Reactive (VAR) payments.   

 

Figure 1.  Expenses and Revenue 
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McNeil Station provides significant economic benefit to Vermont and the surrounding region through 
the operations of the facility, purchase and handling of wood fuel, and avoided cost of carbon emissions.  
The facility, Vermont’s largest wood-using facility, provides: 

 $25.3 million in annual direct economic impact, 79 percent of which is in Vermont; and 
 $66.5 million in annual direct, indirect and induced economic impact, 75 percent of which is in 

Vermont. 

   Direct, Indirect & Induced  
   Vermont Only    Total Impact  
    
Wood Fuel   $              12,355,893   $               29,072,358  
* Swanton Yard  $                2,827,154   $                 2,827,154  
* Railroad  $                3,470,159   $                 3,470,159  
* Waste Wood Avoided Cost  $                   745,500   $                    745,500  
* Waste Wood Chipping   $                   189,000   $                    189,000  
    
Payroll   $              15,411,902   $               15,411,902  
Overhead  $                6,043,109   $                 6,043,109  
    
Property Tax   $                2,504,561   $                 2,504,561  
    
Misc. General Spending   $                     86,326   $                      86,326  
    
Carbon (avoided $)   $                6,199,298   $                 6,199,298  
    
Total   $            49,832,903   $             66,549,368  

 

Table 1.  Total Economic Impact 

McNeil Station is also responsible for the creation of 80 jobs at the facility and in the wood fuel supply 
chain, with total wages for these positions estimated to be $4.5 million annually. 

The operations of McNeil Station as a wood-fired electricity generating facility provides benefits to 
Vermont and the surrounding region. 
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Wood Fuel  

McNeil Station procures biomass fuel from loggers and others in the forest products industry.  The vast 
majority of this fuel (98%) is procured as chips – generally made from the tops and branches of trees 
that are harvested for other uses, such as sawlogs for lumber or pulpwood for papermaking. McNeil 
Station does purchase some minor volumes of roundwood, which can be stored and used during time 
periods when loggers are unable to operate due to soft ground conditions – generally during the spring 
mud season. 

The generation station purchased 334,935 green tons of wood fuel in 2019ii, making it the largest 
consumer of wood in Vermont.  McNeil Station purchases wood from eight Vermont counties, as well as 
from proximate counties in New York and a modest volume from Quebec. Unlike fossil fuels that are 
imported from outside of the State and region, or other renewable generation sources that do not 
require ongoing fuel expenses (e.g., solar and wind), biomass electricity generation creates local 
economic benefits through ongoing wood fuel purchases. Assuming an average wood fuel price of $28 
per green toniii iv, McNeil Station purchased $9.4 million in wood fuel in 2019.  The figure below shows 
estimated wood fuel purchases in each Vermont county. In addition to what is shown below, the facility 
purchased $5.4 million in fuel from Quebec and Clinton, Essex, Franklin and Warren Counties in New 
York. 
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Figure 2.  Wood Fuel Purchases by Vermont County, 2019 (green tons) 
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In addition to dollars, the market for biomass fuel created by McNeil Station creates jobs.  Logging crews 
produce biomass as part of a mix with other forest products, including sawlogs and pulpwood.  The 
figure below shows how multiple products can be generated from a single tree or timber stand. 

 

Figure 3.  Sawlogs, Pulpwood and Biomass Can All Be Generated from a Timber Harvest 

Assuming that a 4-person logging crew (exclusive of trucking) can produce 35 loads per week, at 30 tons 
per load, these 4 loggers would generate an estimated 1,050 tons of wood per week. Because loggers 
cannot work the entire year (often spring and fall mud season conditions keep loggers from operating 
for extended periods of time), we assume 45 weeks of operation per year. Given the above 
assumptions, McNeil Station’s annual wood use directly supports the production of 28 full-time (FTE) 
logging jobs.  According to data from the US Bureau of Labor Statisticsv, the average wage for a logging 
company employee in Vermont is $41,250 per year.  Using this wage, the market created by McNeil 
Station an estimated $1.16 million in logging wages annually. 

In addition to logging jobs, providing wood fuel to the facility requires trucks, and thus generates 
trucking jobs.  Again assuming 30 tons per load, McNeil Station’s wood use requires 11,165 deliveries 
per year, or 43 deliveries per day (assumes 260 delivery days). Assuming that each truck can make three 
deliveries per day, this means that McNeil Station supports 14 trucks and FTE truckers.  According to 
data from the US Bureau of Labor Statisticsvi, the average wage for trucker in Vermont $45,250 per year.  
Using this wage, the market created by McNeil Station provides $633,500 in trucking wages annually. 
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Wood Handling 

In addition to wood purchases, McNeil Station has a unique situation where much of the wood fuel used 
at the facility is delivered to a remote yard in Swanton, Vermont and then sent to the facility via a short-
line rail carrier. This arrangement, which adds cost to the delivered cost of wood fuel, was established to 
decrease truck traffic in the area around McNeil Station. 

In 2019, roughly 280,000 green tons of wood fuel were delivered to Swanton, unloaded, stored on site, 
and re-loaded into rail cars. Operations at this yard cost McNeil Station roughly $912,000 in 2019.  The 
Swanton yard employs an estimated 2.5 people to conduct these activities.vii  Assuming a wage similar to 
an agricultural equipment operator at $31,050viii, the Swanton yard provides an estimated $77,625 in 
wages annually. 

Railing this wood from Swanton to McNeil Station in Burlington costs an additional $2 million per year.  
The vast majority of this is the charge for trains, but also includes switching fees, weather-related 
delays, and charges for snow trains.  The short-line rail uses two individuals to operate each chip train.  
Assuming a wage of $49,250ix, these two rail jobs provide $98,500 in wages annually. 

INRS notes that the yard and rail costs, spread over all wood fuel used (including any delivered 
directly to McNeil Station via truck) adds $7.80 per ton to the cost of fuel.  Assuming 1.6 green 
tons of wood fuel are used to generate a megawatt hour of electricityx, this means an increased 
fuel cost of $12.48 per MWh associated with the Swanton yard and rail. 

In addition to wood procured via forestry operations, McNeil Station has an on-site wood waste yard 
where individuals can drop off pallets, untreated lumber, tree trimmings and other clean wood for use 
as a fuel.  McNeil Station then pays a contractor to come in three times annually to grind the wood 
waste, allowing it to be sized for use as biomass fuel. This costs roughly $90,000 per year.  In 2019 
McNeil Station’s waste wood program generated 7,100 tons of wood fuel for use at the facilityxi. At an 
avoided cost of $50 per ton (avoided tipping fee)xii, the waste wood yard provided Chittenden County 
residents a value of $355,000 in 2019. 
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Plant Operations 

Operating McNeil Station requires a professional staff to operate the facility.  As a baseload generator, 
McNeil Station is staffed around the clock for the entire year, and always available for generation (with 
the exception of planned maintenance and unplanned outages). McNeil Station employs 33, with an 
annual payroll of $3.5 million and overhead (benefits, employee costs, etc.) of nearly $1.4 million.  Total 
staffing costs for McNeil Station are roughly $4.9 million annually. 

McNeil Station pays a property tax to the City of Burlington.  In 2019 that property tax was $1.4 million. 

There are a number of costs associated with plant operations that can be described as “Miscellaneous 
Operating Expenses”. These include utilities, materials & supplies, dues, outside technical services, 
repairs and maintenance, professional trainings, phones, and publications.  These costs are a relatively 
minor expense for McNeil Station – roughly $54,000 per year. 

  



 

 

Innovative Natural Resource Solutions LLC Page 10 

 

Carbon  

While the combustion of biomass to generate electricity generates carbon emissions at the stack, this is 
offset by the fact that forests absorb carbon from the atmosphere as they grow. Carbon contained in 
wood fuel is already part of the above-ground carbon cycle, unlike fossil fuels which take ancient carbon 
that has been sequestered for millions of years and adds it to the atmosphere. It is for these reasons 
that, at the federal level, both the Environmental Protection Agency and the United States Congress 
have recognized biomass as “carbon neutral”.xiii 

Timberland in the Vermont and New York counties where Burlington procures wood fuel from have 
been adding tree carbon since at least 2003.xiv 

 

Figure 4.  Tree Carbon on Private Timberland in Vermont (Addison, Chittenden, Franklin, Lamoille, 
Orleans, Rutland, Washington and Windsor) and New York (Clinton, Essex, Franklin and Warren) 
Counties - Where McNeil Station Procured Wood Fuel in 2019 

If the 227,247 MWh that McNeil Station generated in 2019 did not come from the plant, they would 
need to be procured from other generators in ISO-New England. The regional grid has an average carbon 
dioxide (CO2) emission rate of 682 pounds per MWh, or 0.341 tons per MWhxv xvi. This means that using 
biomass at McNeil Station kept 77,491 tons of carbon emissions from occurring at alternative electricity 
generation facilities.  

At a value of $80 per ton for carbon emissionsxvii (N.B. – this is a placeholder value; there is not currently 
a mandated market for carbon emissions), this means the avoided carbon cost of generating electricity 
with biomass at McNeil Station is $6.2 million annually. 
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Generation Revenue & Operating Expenses 

McNeil Station generated 227,247 MWh of electricity in 2019, and received payments for electricity and 
Renewable Energy Certificates (RECs) associated with this generation.  Additionally, the facility received 
capacity payments from IS)-New England for being available to generate electricity when called upon, 
and Volt Ampere Reactive (VAR) payments for the value of generation near an electricity load center 
(the City of Burlington).   

As shown in the table below, these generation-related revenues provide an estimated $19.9 million in 
revenue to McNeil Station annually. 

Electricity sales (MWh)xviii   
                    

227,247  
 

     

Electricity     

 Electricity revenue ($/MWh)xix    $ 34.86   

 Electricity Revenue     $ 7,921,830  
Renewable Energy Certificates    

 REC Revenue ($/MWh)xx xxi   $ 30.99   

 REC Revenue     $ 7,042,385  
Capacity      

 Capacity ($/kW month)xxii   $ 8.29   

 Capacity ($/MW month)   $ 8,290   

 MW per month   50  

 Monthly Capacity Payment    $ 414,500   

 Total Capacity Payment    $ 4,944,158 
VAR Payments    

 VAR Paymentsxxiii    $ 25,000 
     
Total      

 Total Generation Revenue    $ 19,933,373 
 

Table 2.  Generation-based Revenue, 2019 (estimate) 

This is revenue brought in through operations of the facility.  Importantly, this is not included in 
calculating the total economic impact of McNeil Station because it is these same funds that are used to 
purchase wood fuel, pay employees, and cover other expenses. To include this revenue in the final 
calculation would be double counting. 

Additionally, McNeil Station’s operations support the electricity grid in Northwestern Vermont.  
According to information provided by the Vermont Electric Power Company (VELCO), if McNeil Station 
was not operating, that would create a “problem for the local area encompassing the City of Burlington, 
Essex and Winooski”, and that “the 34.5 kV lines around McNeil could be overloaded during relatively 
heavy load days.”xxiv 



 

 

Innovative Natural Resource Solutions LLC Page 12 

 

While generating an estimated $19,933,373 in revenue, the facility incurred $24,093,818 in expensesxxv 
– wood fuel, operations, maintenance, and taxes.   

 

Figure 5.  Expenses and Revenue 

While future revenues and expenses are uncertain, it is known that capacity payments in the ISO-NE 
market are scheduled to decline in coming years, REC markets can be unpredictable (and subject to 
rapid change based on either political or market activity), and there is no market indication that 
wholesale electricity market prices will rise 
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Summary – Direct Economic Impact 

Based on the information above, McNeil Station has a direct economic impact of $25.3 million, 79% of 
which is in Vermont (the remainder is associated with wood fuel purchases from proximate New York 
and Quebec).   

   Direct      
   Vermont Only    Total Impact   Jobs (FTE) 
     
Wood Fuel   $        3,985,772   $            9,378,180        42  
* Swanton Yard  $           911,985   $               911,985       2.5  
* Railroad  $        2,029,333   $            2,029,333           2  
* Waste Wood Avoided Cost  $           355,000   $               355,000   
* Waste Wood Chipping   $              90,000   $                 90,000   
     
Payroll   $        3,510,684   $            3,510,684        33  
Overhead  $        1,376,562   $            1,376,562   
     
Property Tax   $        1,407,057   $            1,407,057   
     
Misc. General Spending   $              53,954   $                 53,954   
     
Carbon (avoided $)   $        6,199,298   $            6,199,298   
     
Total   $     19,919,645   $        25,312,053        80  

 

Table 3.  Direct Economic Impact 

McNeil Station is also responsible for the creation of 80 jobs at the facility and in the wood fuel 
supply chain, with total wages for these positions estimated to be $4.5 million annually.   

Importantly, these jobs are maintained as long as McNeil Station is operating and using wood 
fuel. This is in contrast with some other forms of renewable electricity generation, where most 
jobs are associated with the development and construction of generation units, not their 
ongoing operations.  
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Multiplier Effect 

INRS has reviewed relevant literature to estimate the multiplier effect for each relevant area of 
economic activity.  The multiplier effect, used in economics to provide an understanding of the 
economic impact of activities, is defined as: 

“Multiplier effect: means the cumulative economic activity arising from the fact that the 
biomass electric power generation industry’s direct effect contribution spreads across 
the state’s economy by creating and supporting jobs, incomes, and taxes. The biomass 
electric power generation industry supports its supply industries in the region by making 
purchases from them (indirect effect). These supply industries include commercial 
logging, marketing research, truck transportation, and maintenance and repair 
construction. In addition, workers in the biomass electric power generation industry and 
its supply industries spend their earnings in the region’s services industries (induced 
effect), such as restaurants, medical services, grocery stores, real estate, and retail 
stores.”xxvi 

The table below shows the multipliers used for each economic activity, and the reference determined 
through a literature review.  

  Multiplier  Reference 
    
Wood Fuel           3.10  Plymouth Statexxvii 
* Swanton Yard          3.10  Plymouth State 
* Railroad          1.71  ASLRRAxxviii 
* Waste Wood Avoided Cost          2.10  Hardy, Stevenson & Assocxxix 
* Waste Wood Chipping           2.10  Hardy, Stevenson & Assoc 
    
Payroll           4.39  Plymouth State (calculated)  
Overhead          4.39  Plymouth State (calculated)  
    
Property Tax           1.78  Plymouth State (calculated)  
    
Misc. General Spending           1.60  Plymouth State (calculated)  
    
Carbon (avoided $)           1.00  xx 

 

Table 4.  Multipliers by Category 
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Summary – Total Economic Impact 

Using the information above, the total economic impact of McNeil Station is estimated at $66.5 
million, 75 percent of this impact is in Vermont. 

   Direct, Indirect & Induced  
   Vermont Only    Total Impact  
    
Wood Fuel   $              12,355,893   $               29,072,358  
* Swanton Yard  $                2,827,154   $                 2,827,154  
* Railroad  $                3,470,159   $                 3,470,159  
* Waste Wood Avoided Cost  $                   745,500   $                    745,500  
* Waste Wood Chipping   $                   189,000   $                    189,000  
    
Payroll   $              15,411,902   $               15,411,902  
Overhead  $                6,043,109   $                 6,043,109  
    
Property Tax   $                2,504,561   $                 2,504,561  
    
Misc. General Spending   $                     86,326   $                      86,326  
    
Carbon (avoided $)   $                6,199,298   $                 6,199,298  
    
Total   $            49,832,903   $             66,549,368  

 

Table 5.  Total Economic Impact 

Associated with this activity, McNeil Station generates an estimated $19.9 million annually in 
generation-based revenue from the sale of electricity, Renewable Energy Certificates, capacity payments 
and VAR payments.  
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Appendix – Pilot Reporting 
 

As detailed in 6.b of the Memorandum of Understanding from the 2016 IRP, BED agreed 

to provide an assessment of the lessons learned from current and future pilot projects. BED’s 

current projects include a water heater program in partnership with Packetized Energy 

Management (“Packetized”), the Electric Bus program with Green Mountain Transit, and the 

Residential Electric Vehicle Charging Rate. In addition to these three programs, BED is working 

to launch three new pilot projects originating from DeltaClimeVT, a Vermont-based accelerator 

program for clean technology companies in their startup stage. BED was a founding member of 

DeltaClimeVT and has supported it since inception by providing access to mentorship and 

potential to engage in a pilot project. The three pilot projects under development involve 

Medley Thermal, WexEnergy, and ThermoAI. Finally, BED has recently concluded a pilot 

project that arose from a previous DeltaClimeVT session and was supported by an American 

Public Power Association DEED grant. BED worked with Omega Grid to craft a demand side 

management program using Blockchain. Each of these pilot programs will be discussed in 

further detail in the sections below. 

Water Heater Program 

Packetized is a clean technology company that focuses on making demand for electricity 

flexible with software. BED has partnered with Packetized for over 3 years, and their product 

offerings have expanded from their initial offering that turned electric resistance hot water 

heaters into thermal batteries to electric vehicle chargers and heat pumps. 

The first device that Packetized produced was the UL-listed Mello smart thermostat 

(Figure 1) that allows traditional electric resistance water heaters to match energy demand with 

real-time grid conditions. BED became the first utility to test and 

deploy this device in 2017 and has since deployed 84 devices. 

The controls for this device have expanded beyond manual 

setpoint controls and now allow BED to coordinate large fleets 

of distributed energy resources with automated peak shaving 

and energy arbitrage. These two features use predictive 

analytics that forecast load shapes and market conditions to 

determine peak probability and identify opportunities to 

perform energy arbitrage. BED uses its load forecasts to schedule 

these peak events automatically, while Packetized uses its internal forecasts to optimize the 

energy market. Figure 2 shows the power being recorded by the fleet of water heaters under 

control. The dark blue line is the actual power being drawn by the water heaters and the lighter 

 

Figure 1: Packetized Mello device 



blue line is the kW setpoint that is determined by the software to select how many water heaters 

are allowed to begin producing hot water. A signal can be sent to this group of water heaters so 

that they function as a virtual battery to increase and decrease the amount of electricity that 

they are consuming in real-time. 

 

 

 

 

 

 

 

 

To attract customers to sign up for the water heater program BED provides a $20 bill 

credit as well as a reoccurring monthly bill credit of $1.37 if their Mello device is connected. 

Currently BED has control of 84 water heaters in Burlington and is continually looking to grow 

the program.  

Electric Bus Program 

On January 28, 2020, two Proterra electric buses (“e bus”) were delivered to Green 

Mountain Transit, the public transit authority providing transportation services in Chittenden 

and Washington counties. One e bus (#990) went into full operation on March 2nd and is running 

assigned routes on regular basis. Through July 31, 2020, Bus #990 has consumed nearly 24,000 

kWh and travelled over 8,000 miles, according to GMT. The second e bus (#991) encountered 

unexpected mechanical problems that were unable to be resolved until August because a 

Proterra mechanic was prohibited from travelling to Vermont due to the COVID19 pandemic. 

On August 6th, e bus #991 went into full service. Both #990 and #991, however, have been 

operating at reduced levels due to the State of Vermont’s public health orders in response to 

COVID-19.  

Additionally, both e buses are being evaluated by a team comprised of VTRANs, GMT, 

VEIC, and BED. This evaluation commenced in July. Over the next several months, the team 

will evaluate the operating performance of the e buses, the amount of energy consumed, and 

 

Figure 2: Packetized Energy’s virtual battery for BED’s fleet of water heaters 



their efficiency measured in miles per gallon equivalent (i.e., the amount of electric power 

consumed converted into gallons of diesel fuel). 

Residential Electric Vehicle Rate 

In January of 2019, BED launched its residential electric vehicle rate that provides a 

~$0.07/kWh discount for the electricity used to charge an electric vehicle. Unlike other rates that 

impose on-peak pricing, all of a customer’s monthly charging must take place during 

designated off-peak times in order to receive any credit on their monthly bill. This 

programmatic design avoids making the customer any worse off compared to their current 

billed energy rate while sending strong price signals to avoid peak times. Alternatively, given 

the significant costs of transmission and capacity peaks, the on-peak rate would need to be very 

high in order to send the same price signal, but would have the adverse effect of exposing the 

customer to a downside of a price beyond that of the normal retail rate.  

To join the rate a customer must install a BED-approved measuring device that sub-

meters the charger’s kWh. Upon launching the program, BED approved two charger 

companies: Packetized Energy and ChargePoint. BED is working to approve more charger 

providers by testing the accuracy of their telemetry and the accessibility of both their 

application programming interface and the user interface by which customers manage their 

charging. 

There are currently 35 residential accounts 

on this rate. Figure 3 shows the hourly 

charging that has been shifted outside of the 

on-peak hours (noon – 10pm). More than 

90% of charging occurs during off-peak 

hours of the day (after 10 pm and before 

noon).  

BED is seeking to expand the number of 

customers who participate in this rate 

program. One option being considered is to 

expand this rate to include commercial 

customers. The second focus is on testing 

level 1 smart chargers to lower the installation cost associated with bringing a 220/240v outlet to 

where the car is parked. As mentioned above, BED is also working to expand the list of 

approved level 2 chargers that can be used to participate in the rate program.  

 

Figure 3: EV rate charging load profile over last 2 years 



Medley Thermal 

A pilot project in conjunction with BED’s facilities staff and Medley Thermal is 

underway to explore the possibility for price-dispatchable electric load in the form of electric 

boilers located in parallel with fossil fuel boilers. This pilot will take place at BED’s Pine Street 

location since installation on company property avoids the rate implications during the pilot 

phase. 

ThermoAI 

BED is implementing a pilot project with ThermoAI to optimize the efficiency of the J.C. 

McNeil Generating Station through learning algorithms. The three phases of this pilot include 

data accumulation and simulation of the plant to determine the potential for fuel savings; use of 

the algorithms to make suggestions for operational adjustments such as air intake; and allowing 

the trained algorithm to make supervised adjustments to the facility’s combustion operations. 

BED will be one of the first companies to work with ThermoAI and is excited by the potential 

for improved efficiencies in fuel use. 

WexEnergy 

BED is working on a pilot project in conjunction with VGS staff and WexEnergy to test 

the thermal savings from WexEnergy’s product, Window Skins. This product is a lightweight, 

transparent plastic window treatment that increases the insulation of windows. BED will work 

with VGS to select a building in Burlington for installation of Window Skins and to run 

measurement and verification analysis to determine the thermal savings achieved. Considering 

recent building occupancy changes due to COVID-19, BED and VGS are planning to use 

benchmarking with comparative building types to better understand savings by controlling for 

occupancy changes that historical data would not be able to achieve. 

Omega Grid 

In a wholesale market system such as ISO-NE, under traditional utility rates (or even 

perhaps most rate structures), there are times where the marginal cost to serve retail load will 

exceed the retail revenues from that load. This pilot project combined price signals with the 

probability of occurrence of key cost causation events, customer baselining and optimization 

algorithms to allow customers to more intelligently choose when to use electricity, while still 

being served under a traditional rate structure. 

BED worked alongside Omega Grid (OG) to design and deploy an opt-in blockchain 

market incentive program. The program encouraged residential, commercial, and industrial 

load reduction or generation in response to wholesale market cost drivers (including 

anticipated monthly peak-based transmission and annual peak-based capacity charges). The 

project ran for 12 months beginning in the fall of 2018 and concluding at the end of the 2019 

summer.  



This program allowed BED to avoid excess transmission, capacity, and energy charges 

on the wholesale market (ISO-NE). The majority of the value of the savings (70%) was allocated 

to customers participating in the program, 20% was retained as general system benefit, with the 

remaining peak savings getting passed to OG as performance payment for their work. 

The customers received “tokens” for their load reduction or generation with an 

unalterable record on the OG private blockchain. After the ISO-NE savings had been calculated 

by BED (which occurred both monthly for energy and transmission based savings and annually 

for capacity based savings), BED allocated 70% of the dollar value of the savings to the token 

holders in proportion to the number of tokens they have earned. This credit created a pooled 

savings funds, which participants were entitled to proportional to the number of “tokens” they 

produced. The OG record along with other market information is auditable and visible by the 

other market participants. 

Future expansion of this program structure could include more localized price signals 

such as costs related to constrained distribution areas. Additionally, it is possible that customers 

with emergency generation may be motivated to install emission controls sufficient to allow 

that generation to respond to these price signals if the price signals are strong enough. 


